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Abstract. Choosing how to represent knowledge effectively is a long-
standing open problem. Cognitive science has shed light on the tax-
onomisation of representational systems from the perspective of cognitive
processes, but a similar analysis is absent from the perspective of problem
solving, where the representations are employed. In this paper we review
how representation choices are made for solving problems in the context
of theorem proving from three perspectives: cognition, heterogeneity,
and computational demands. We contrast the different factors that are
most important for each perspective in the context of problem solving to
produce a list of considerations for developers of problem solving tools
regarding representations that are appropriate for particular users and
effective for specific problem domains.
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1 Introduction

Problem solving is a fundamental activity for intelligent agents – people included.
The ability to solve problems is dependent on expertise, but what is expertise?
Can we leverage expertise with one type of problem to solve others? And how can
we support problem solvers in choosing the right representation to make their task
easier? This paper reviews the current research on representations for problem
solving, both from a human-centred perspective, and from a software-centred
perspective. Our goal is to understand how we can support problem solvers, and
use this knowledge to inform the design of problem solving software – specifically,
theorem provers – by compiling a list of considerations for software developers.

We begin this paper in Section 2 by exploring the cognitive aspects of the
human reasoning system: how people understand and solve problems, and how
expertise affects the solving process. In Section 3 we consider how representations
interplay with human reasoning: the different modalities, their effectiveness, and
how human reasoners choose representations for their problems. Diagrammatic
representations in particular exhibit many of the aspects identified. From the
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software angle, we consider how problems are solved by automated and interactive
theorem provers; Section 4 explores different types of theorem provers, and how
some incorporate multiple representations to varying degrees. In Section 5 we
analyse the cognitive aspects of these systems, and conclude with a list of
considerations for software designers to better align their software with the
cognitive needs of the user.

2 Cognitive factors in problem solving

Whilst the importance of choosing the right representation for a problem and
a person attempting to solve the problem has long been established [28], com-
putationally choosing the right representation remains an open problem. Much
taxonomisation of knowledge representations has been done before, but little in
the context of problem solving. Some people are able to solve problems more
effectively than others, exhibiting expertise in particular domains. But changing
representations, adapting and updating problem solving strategies remains hard
for people – it seems these are the skills of experts. We focus on problem solving
because of its general nature: there is an initial state, some way of identify goal
states, and actions that can be taken that modify the state. A wide array of
tasks can be modelled as problem solving, so we wish to understand how human
experts model problems in order to solve them, and how expertise is related.

2.1 Problem solving

Solving a problem is conjectured to be a tight loop of understanding, planning,
executing, and evaluating progress until a condition is met [28]. Pólya’s influential
work on problem solving, How to Solve It: A New Aspect of Mathematical Method ,
lays out these four steps clearly, presents many varied examples of each step, and
exemplifies the loop in its entirety. A more formal treatment of problem solving
comes from Simon and Newell, where they introduce the problem space [33]. The
problem space is modelled as a (possibly infinite) graph, where nodes are the
problem state and the edges are the actions that allow movement between them;
a walk in this graph originating from the initial state and ending on a goal state
is a solution to the problem. The nature of the problem, and the representation
of the problem, determine the problem space. The person solving the problem
must traverse the problem space.

In this paper, we shall work with Simon and Newell’s model of problem
solving as our grounding. We choose this model because it maps cleanly to
common models of theorem proving, making our discussion more direct. Other
ways to frame problem solving (such as Zhang’s distributed cognition [47], or
Johnson-Laird’s mental models [18]) may also function as a suitable model for
this discussion, but are beyond the scope of this paper.

When a person is traversing the problem space, some factors are fixed: the
fundamentally serial information processing, small-capacity3 but rapid-recall

3 Famously, seven plus or minus two chunks [22].
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Fig. 1: A typical Tower of Hanoi puzzle. The goal is to move all three discs from
the starting peg to another peg, without placing a larger disc atop a smaller disc.

short-term memory, and effectively infinite slow-recall long-term memory. But
other factors are mutable, such as how the space is traversed. Kotovsky et al.
presented participants with variations on the ‘Towers of Hanoi’ problem, recording
how they interacted with the problem and made progress towards (and away
from) the solution [19]. The Towers of Hanoi puzzle, depicted in Figure 1, involves
three discs with holes stacked atop one peg – a small disc on top, then a medium
sized disc, then a large disc at the bottom. Alongside, there are two pegs without
any discs. The goal is to move all three discs from the first peg to either of the
remaining pegs such that they all end up in one single peg, with the condition
that at no point in the process should a larger disc be on top of a smaller disc.
Kotovsky et al. analysed how people perform when presented with isomorphic
variants of the Towers of Hanoi puzzle, such as monsters-and-globes, boxes-and-
dots, or acrobats-and-flagpoles, and with different types of action: either moving
objects (as in moving a disk from one peg to another) or changing their size.
Notably, representations involving unfamiliar scenarios (e.g., monsters rather than
acrobats), and representations involving changing rather than moving, strongly
hindered problem-solving performance, in spite of the problem being isomorphic.
Moreover, when facing an unfamiliar problem, participants tended to probe the
problem space: they would perform a short sequence of actions with minimal
deviation from the planned sequence before returning to the initial state. After
these probes had been completed, and the participants were satisfied with their
ability to traverse the space, they applied short leaps of two actions chained
together, rapidly converging on the goal state. These leaps achieved sub-goals,
unblocking the next action [19].

Kotovsky et al.’s work has two implications: first, there are two distinct meth-
ods of traversing the problem space (the probing back-and-forth approach, and
the rapid sub-goal chaining approach); and second, changing the representation of
the problem without changing its nature made the Towers of Hanoi-like problems
easier or harder. These two results are tightly coupled: the representation of the
problem impacted how the participants were able to traverse the problem space,
and the participants’ relative expertise in the problem space affected how difficult
they found the task. To better understand this, we must understand expertise.

2.2 Space traversal and expertise

Algorithmically, there are many ways to traverse a graph: breadth first search,
depth first search, A* heuristic search, etc. While people are less procedural,
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Larkin et al. identify two strategies that solvers use to traverse the problem space:
means-ends analysis and knowledge development [20]. The former is similar to the
behaviour seen by Kotovsky et al., using probing then sub-goal unblocking; the
latter uses heuristics to avoid the probing and sub-goal analysis to immediately
start chaining actions. Further, the solvers who use each strategy can be identified:
means-ends analysis is indicative of novices in the problem domain, while experts
employ knowledge development [20].

The strategy of means-ends analysis, which is employed by novices, is a type
of ‘working backwards’. The solver must identify what necessary conditions must
be met to move towards the goal, and then work towards this new sub-goal [19].
Thus the novice begins to probe the problem space, understanding what effect
their actions have, and then can begin to achieve their sub-goals. Maintaining
this internal sub-goal chain is cognitively demanding, using working memory
that could otherwise be devoted to the problem itself, not the ‘traversal state’;
even small problem spaces overwhelm human working memory [19].4 Worse, the
high cognitive load required to employ means-ends analysis can inhibit schema
acquisition, a method of becoming an expert [40].

Expert problem solving is best modelled through knowledge development,
in which powerful heuristics guide the expert through the problem space [40].
Because experts are familiar with the domain – and thus the problem space –
there is little to no ‘probing’ phase; they have seen and solved similar problems
in the past. Instead, experts can immediately begin applying schemas, which
are patterns that the expert can recognise in the new problem space, and so
immediately apply actions [40]. Not only does this approach eliminate the probing
and sub-goal creation, this approach induces less cognitive load – the utilisation
of working memory – than means-ends analysis [40]; experts will be faster and
more cognitively efficient.

2.3 Cognitively effective representations

A representation is a view of a problem: the problem is expressed using some
representation. The representation itself belongs to some representational system:
a collection of syntax and semantics that generate some agreed-upon notation
and interpretation. This is sometimes called an external representation because
it exists outside the mind; there is a corresponding internal representation that
exists within the mind of the problem solver [30]. Cheng links internal and
external representations in two directions: an appropriate external representa-
tion can induce an effective internal representation, while an effective internal
representation encourages external representation generation [7].

With a diverse range of representational systems at our disposal, some with
more diagrammatic aspects than others, we must consider: what makes a rep-
resentation effective? In the context of problem solving, there are quantifiable

4 By analogy to computers, we devote ‘registers’ that would otherwise be used on the
problem to maintaining the ‘call stack’, but the human brain’s ‘call stack’ capacity is
small, and – due to the nature of graph search – easy to overflow.
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results we might be interested in: lower cognitive load, shorter times to generate
a solution, shorter solution paths. But in this subsection we look at the repre-
sentations themselves, not the results they generate: in order to achieve these
results, what properties do our representations have?

We consider effective external representations in relation to the internal repre-
sentations they induce. Green and Blackwell created the ‘Cognitive Dimensions’
framework as a guide on creating representations, but note that it is not intended
for a deep analysis of existing representations [13].5 Instead we here consider the
5 general criteria containing the more specific 19 criteria identified by Cheng [7]
for effective representations. These are: direct encoding, low-cost inference, con-
ceptual transparency, generality, and conceptual-syntactic compatibility. In the
next section, we will compare them to diagrammatic aspects of representations.

Direct encoding Cheng’s first criterion for effective representations is that it
directly encodes the types, structures, and relations of the problem [7]. This is the
same benefit that diagrammatic representational systems provide. But why is this
necessary for a representation to be effective? Consider, for example, Duncker’s
‘candle problem’: given a box of tacks, some matches, and a candle, attach the
candle to the wall [45]. Participants will attempt to tack the candle to the wall,
or melt some wax to use as glue, neither being effective; rarely do they consider
they could pin the tack box to the wall and sit the candle in the box [45]. Condell
et al. call this inability to re-contextualise the tack box functional fixedness: the
‘type’ of the box is wrong, since in the ‘representation’ people have, the box is a
container for tacks, not a container for candles as required for the solution [8].
Tversky highlights a similar point in regards to structure: people have a mental
hierarchy to categorise their environment, and benefit when the representation
follows the same hierarchy [41].6 Thus a representation that more directly encodes
a problem is likely more effective than those that encode the problem indirectly.

Low-cost inference The cost of inference in representations is a combination
of factors: while the inferential actions themselves should be low-cost to perform,
they must also be low-cost to identify [7]. In diagrammatic representational
systems, this is a mixture of geometric and spatial aspects, syntactic constraints,
and syntactic plasticity. One notable variety of low-cost inference is the free ride
– an inference that can be made without specifically taking steps to make that
inference [31]. Stapleton et al. generalise this to observational advantages: some
representations allow information to be observed ‘for free’ that would require
purposeful inference in other representations [35]. ‘Free’ is certainly low-cost;
representations exhibiting observational advantages are likely to be more effective
than their disadvantaged counterparts.
5 Although work that builds upon these dimensions (e.g., [4]) often includes concepts

very close to those we are about to discuss.
6 In this case, the hierarchy is that the box is restricted to tacks, and there is no

hierarchical relationship to the candle; the necessary hierarchy has box restricted to
objects, which includes tacks and candles.
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Conceptual transparency More difficult to define, conceptual transparency is
the ability to ‘see through’ the representation to its underlying meaning. Cheng
decomposes conceptual transparency into five aspects: coherence and unambiguity;
small conceptual gulf; integration of conceptual perspectives; integration of
granularity scales; and the comparing and contrasting of typical, special, and
extreme cases [6]. These are themselves difficult to resolve, and are beyond the
scope of this review.

Generality It is desirable that a representational system allows us to represent a
variety of situations (generality) and, equally important, that there are available
a variety of syntactic operations that allow us to traverse the space (generativity)
towards desirable goals. This relates to the syntactic power of the systemdiscussed
next.

Conceptual-syntactic compatibility Cheng’s final criterion for effective repre-
sentations is conceptual-syntactic compatibility. In diagrammatic representational
systems, this is related to the idea of syntactic constraints: a close relationship
between ‘expressible’ and ‘valid’ results in a more effective system [7]. By analogy,
in computer science we discuss making illegal states unrepresentable [23] for the
same effect: if you cannot say something incorrect, then you have reduced the
ways in which you can make a mistake. Other mechanisms through which repre-
sentations have conceptual-syntactic compatibility is by having a construction
process which mirrors the problem solving process, and by allowing for distinct
phases in encoding, interpreting, and making inferences [7].

In the problem solving context, we can consider an effective representation to
be one that provides a problem space in which the solver is sufficiently expert:
they already have access to low-cost inferences and powerful schemas. All the
above criteria contribute to making the space easier to traverse for the solver.
However, it is worth noting that they are not independent. For example, while a
general representational system might be more likely to guarantee the existence
of a solution, the problem space will often be more ‘branchy’, making correct
inferences more costly. This compromise between generality and low-cost inference
is captured by Cheng’s concept of syntactic plasticity [7]. This sort of compromise
indicates that choosing an effective representation is a complex optimisation
problem where many competing factors have to be weighted. Furthermore, often
they cannot be weighted equally for solvers with differing levels of expertise.

Novices and experts alike solve problems by traversing a problem space,
applying actions to change state within the space such that they eventually
reach a goal state. But their traversal methods are very different: novices have
a costly, means-ends analysis approach to searching the problem space; experts
apply powerful heuristics called schemas to efficiently work from the start to the
goal. Clearly, being an expert is advantageous: can we somehow transfer these
advantages to a novice? Or perhaps, can we change the problem space so that
our novice is already expert?
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3 Heterogeneity of representations

As Kotovsky et al. discovered, the way a problem is represented can significantly
impact how difficult the problem is to solve [19]. But why is this, and what
exactly is involved in the representation of a problem? In this section we consider
different modalities of representations, and what it means for a problem to be
represented effectively.

3.1 Diagrammatic aspects of representations

Restricting ourselves to external representations, we can attempt to classify repre-
sentations: a common distinction is between ‘sentential’ – a sequence of characters
composed only through concatenation [37] – and ‘diagrammatic’ representations.7

Despite their apparent value of ‘10 000 words’ [21], diagrammatic representations
are often second-class in mathematics, even in highly visual domains such as
graph theory. Only in the last 25 years have diagrammatic representational sys-
tems begun to be treated formally to address this gap. Informally, diagrammatic
representations are widely used by mathematicians; formally, diagrams are often
stripped from the discussion, because mathematicians consider them unsuitable
for proof [16]. Even educational materials such as textbooks often present only
sentential solutions to problems, obscuring any intuition that a diagram can
provide [46]. Perhaps it is because diagrammatic systems are difficult to define:
what makes a diagrammatic representation diagrammatic?

Taken in the extremes, there is obvious consensus around which representa-
tions are ‘sentential’ and which are ‘diagrammatic’: in mathematics, standard
propositional logic notation is sentential, while Euler diagrams are diagrammatic.
But as we drift away from these extremes, the boundary becomes indistinct:
positioning limits on a summation is not concatenative, and hints towards some
vertical-positioning relationship; a table filled with words uses space and position-
ing to encode information, but uses strings extensively. The distinction is difficult
because, as Giardino observes, there is no sharp distinction to be made [10].
Representations exist on a continuum, some with more diagrammatic aspects
than others; when we discuss diagrammatic representations we are referring to
representations exhibiting four diagrammatic aspects: direct encoding, syntactic
constraints, syntactic plasticity, and heavy use of geometric and spatial attributes
and relations. Let us consider each of these in more detail.

Direct encoding Diagrammatic representations directly encode the types, struc-
tures, and relations of the problem, rather than using some indirect association
as in sentential representations [37]. Consider a relation ‘to the right of’: we can
easily state an instance of this sententially:

a is to the right of b

while observing that a is visibly left of b. By comparison,

7 We consider only visual representations; representations that are audial or tactile,
for example, are beyond the scope of this review.
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b a

is a more direct encoding: a is literally to the right of b. This extends to all
levels: rather than using the word ‘square’, diagrams can include squares; rather
than explaining how nodes and edges form a graph, we can draw the graph.
But this can also enforce specificity: we can sententially state that ‘a zebra has
some stripes’, without making any claim to how many stripes, but any particular
drawing of a zebra has a fixed number of stripes. This makes the representation
easier to process at the cost of reducing generality [38].

Syntactic constraints Shimojima observed that rules of a representational
system come in two broad classes: intrinsic, and extrinsic8 [32]. An intrinsic (or
syntactic) constraint is imposed by the syntax of the representational system:
the geometry, topology, or physics of the representation enforces the rules. An
extrinsic constraint is imposed by the problem solver: the representational system
allows for statements that the solver wishes to avoid. Going back to our ‘to the
right of’ example, let us assume a system where we can write a >r b, meaning a
is to the right of b.9 Then we can state the following three facts:

a >r b, b >r c, and c >r a

Now, if we try to represent this in our ‘positional’ notation from earlier, we hit
an intrinsic constraint: we cannot arrange the letters on the page such that this
is true! The representational system has prevented us from representing some
state. On a plane, the sentential notation is too permissive: we failed to apply
the extrinsic constraints necessary to identify a nonsense statement. But on a
sphere, the positional representation is overly restrictive: the intrinsic constraints
are preventing us from encoding a valid state.

Geometry and space Finally, diagrammatic representations make use of
geometry and space [37]. The benefit of this is that it exploits the human visuo-
spatial reasoning system – the Towers of Hanoi variants presented by Kotovsky
et al. to participants consistently demonstrated that participants more efficiently
solved the ‘physically plausible’ variants [19]. Humans evolved in a physical world
that obeys particular rules: we are well-adapted to manage systems that follow
these rules. But geometry and space are limiting; just as we identified in direct
encoding and syntactic constraints, we forfeit abstraction and generality by
following the physical rules.

Characterising diagrammatic representations by these properties exhibits why
diagrams fit various criteria from Section 2.3 for effective representations.

3.2 Recommending a representation

We have seen that representations can affect how difficult a problem is to
solve and argued that diagrammatic representations often exhibit favourable
aspects for problem solving. Undeniably, changing to an effective representation

8 [32] identified variations on this divide, but all are sufficiently similar for our discussion.
9 Note again that, visually, a is to the left of b.
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is useful [1,6,12] – the problem is that students do not necessarily change to a
more effective representation [39]. Ideally, we want to support students to change
representation to one that is appropriate for the problem and for their expertise.
But how should they be guided to change towards effective representations?

In the restricted domain of extracting information from a database, Grawe-
meyer’s External Representation Selection Tutor (ERST) was able to recommend
an information visualisation to users to answer queries [12]. The visualisations
were scatter plots, sector graphs, pie charts, bar charts, tables, and Euler diagrams;
when supported by ERST in choosing an effective representation, participants
were more effective at answering the queries [12]. But to consider tasks beyond
information extraction, the literature on representation recommendation becomes
scarce. To solve a problem, we explore the representation design literature: what
factors are important when designing representational systems, which we may
consider for representation recommendation?

Representation design recommendation is a product of three factors: what
is the problem, who is approaching it, and why are they working on it? This
combination of factors determines the cognitive fit of a representation [24,44].
Vessey introduces cognitive fit as the combination of the specific problem under
consideration, and the overarching task and context in which the problem is
encountered, which together influence the internal representation a person con-
structs [44]. But implicit in Vessey’s discussion is that the person influences the
internal representation; as we saw earlier, an expert and a novice will be operating
with different internal representations: the novice’s internal representation is
tuned for search, and the expert’s for heuristics [20]. Moody makes this explicit:
cognitive fit is the interaction between the problem, the person, and the task [24].

A representation is a complex thing: it is an encoding of information into the
real world, which induces an internal representation in people. A range of factors
determine representational efficacy, and diagrammatic aspects of representations
align to allow for effective representations. By considering cognitive fit, we can
begin to understand how to recommend a representation based on the problem
being solved, the person solving the problem, and the task and context in which
the problem was encountered.

4 Computational considerations of representation

In the previous two sections we considered why and how representations are
evaluated and recommended. In this section, we explore the use of representations
in computational systems. While artificial intelligence researchers have attempted
to build general problem solvers for a long time – consider the aptly named
‘General Problem-Solving Program’ [25] – most success has been had in solvers
specialised to particular domains. We focus on interactive and automated theorem
provers, as this class of software is forced to consider concerns similar to ours:
solving problems, representing them effectively, and considering their users.
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(a)
∑5

i=1(2i− 1) = 52
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C

(b) A ∩B 6= ∅, C ⊂ B
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B

x

(c) B ⊂ A,∃x ∈ A

Fig. 2: (a) Dot diagrams, (b) Euler diagrams, and (c) Spider diagrams.

4.1 Homogeneous systems

Theorem provers are used by people to solve a very specific type of problem:
given some assumptions, derive a specific conclusion. To make progress, the set
of assumptions is updated using already-proved theorems (or axioms) through
inference mechanisms. This maps directly to the problems space we discussed: the
current state is the current set of assumptions, a goal state is any set of statements
which contains the desired conclusion, and the actions to move between states
are the inference mechanisms. So the difference between the theorem provers is
the state space they model – and so the representations they exploit.

Most theorem provers are homogeneous : that is, they use a single representa-
tional system. This single representational system is usually sentential, but the
details vary. One family of theorem provers are those based on type theory: two
notable members are Coq [15], and Nuprl [9]. These systems use Martin-Löf type
theory as their foundational system, and proofs are constructions of a value that
has the type which is an encoding of the theorem to prove. A second notable
family of theorem provers are those with HOL/LCF10 ancestry [11]: HOL4 [34],
HOL Light [14], and Isabelle/HOL [26].11 These systems use a small core of ac-
tions that is intended to be easy to verify, and all other actions must be built on
top of this core. Both families use a syntax that is programming-language-like,
and purely sentential.

Equally homogeneous, but no longer sentential, are the family of diagrammatic
theorem provers. Diamond focuses on diagrammatic proofs of arithmetic using
grids of dots (Figure 2a), and ways of partitioning the grid [17]. The high-level
approach of Diamond is different to that of the sentential provers mentioned
earlier: it works with instances of a proof and generates a generalised version
automatically, rather than expecting the person proving the theorem to work in
the most general case at all times. Edith, and its successor Speedith, focus on
Euler diagrams (Figure 2b) and Spider diagrams (Figure 2c), respectively [36,43].

10 HOL stands for higher-order logic, an extension of predicate/first-order logic. LCF
stands for the logic for computable functions, a theorem prover based on the logic of
computable functions.

11 Isabelle (without ‘HOL’) is a meta-logic system: a developer tailors Isabelle to work
in their particular system. For example, Isabelle/ZF allows people to use Zermelo-
Fraenkel (ZF) set theory rather than higher-order logic. This is an interesting step
towards heterogeneity, but the different logics are inaccessible to each other.
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Their proof structure more closely resembles that of the sentential systems:
from some diagrams you can construct a new diagram; analogously, from some
assumptions you derive a new conclusion. These systems show that software is
capable of supporting diagrammatic representational systems, yet they do not yet
push the bounds to heterogeneous reasoning: exploiting multiple representations.

4.2 Semi-heterogeneity

Homogeneous theorem provers have continued to grow in sophistication and
power, but their generality comes at the cost of speed: certain problems are best
left to dedicated tools that have a better representation for that problem. In
the HOL/LCF tradition, these tools are integrated as hammers [5]. For example,
Isabelle/HOL uses ‘Sledgehammer’ to transform a higher-order logic problem
into a first-order logic problem before passing the transformed problem (along
with a set of relevant lemmas) to automated first-order logic provers; the proof
is returned to Isabelle/HOL, and validated in the verified core like any other
proof [27]. While not obviously heterogeneous – every representational system
involved is sentential – Isabelle/HOL exploits a system with a more effective
problem space by transforming the problem.

Isabelle has a second means of semi-heterogeneous reasoning: the Transfer
package. The Transfer package was designed as a general tool for code generation,
and for the development of quotient types and subtypes. Raggi et al. used Transfer
as the basis for a tool for heterogeneous reasoning [29], so that statements are
transferred across a network of theories that formalise natural numbers in various
ways. With this tool, theorems about natural numbers can be proved under their
representation as either successors of zero, multisets of primes, classes of finite sets,
and others. The one heuristic used to select between potential representations is
the size of sentences. Otherwise, the task of selection is left to the user.

We consider this approach semi-heterogeneous, as it enables the transformation
of sentences across different mathematical theories, while remaining in purely
sentential representational systems.

4.3 Fully heterogeneous theorem provers

We move now from homogeneous or purely sentential systems to heterogeneous
reasoning systems. An early and notable heterogeneous system, Hyperproof, was
an educational tool for first-order logic that used a three-dimensional chessboard
environment alongside a more typical sentential representational system [3]. The
actions available in the two representational systems were different, as would
be expected; proofs in the sentential first-order logic system are often more
verbose than their chessboard counterparts [3]. Barker-Plummer et al. generalised
Hyperproof to Openproof, a framework allowing heterogeneous reasoning with
many different representational systems [2]. The framework avoids an inter-lingua
(common language) but maintains a common proof state; this avoids some ‘lowest-
common-denominator’ expressiveness concerns while maintaining a valid proof.
But as a result, there is a tight coupling between the representational systems
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in Openproof: there is a one-to-one correspondence between the objects and
relations in each representation, and formal translations between them.

MixR is a heterogeneous theorem proving framework that grew out of a desire
to integrate Speedith, the spider diagram reasoner, with Isabelle [42]. The MixR
framework consisted of two parts: one theorem prover that ‘owned’ the proof
state, and many ‘working’ theorem provers that could modify the proof state.
MixR aimed to reuse existing theorem provers, rather than develop specialist
heterogeneous theorem provers. Moreover, MixR allowed for unsound transforma-
tions between the representational systems used by each of the ‘working’ theorem
provers. MixR also introduced heterogeneous statements – using multiple rep-
resentational systems simultaneously – through placeholders.12 MixR, like all
the heterogeneous systems we have discussed, provides the option for heteroge-
neous reasoning. But it does not encourage or guide heterogeneous reasoning:
representation selection is a human-driven process.

This section explored how current software, designed to work towards solv-
ing problems alongside a person, manages the issue of representation. For the
most part, software systems maintain a single representational system, whether
sentential or diagrammatic. Some software is heterogeneous, notably MixR: it
allows the user to combine multiple representational systems together to solve
a single problem, in particular, allowing for informal transformations between
representations. But the decision on which representation system to use at any
given point is driven by the user – while multiple representations may be available,
the user is not helped to use them.

5 Cognitive analysis of computational systems

Each of these computational systems comes with compromises: their representa-
tional systems exist at different points along each of the cognitive factors we have
looked at, with varying degrees of heterogeneity. This in turn interacts with their
generality. We would encourage the developers of existing and future problem
solving software to be cognisant of the compromises they are making for the
cognitive benefit of their users.

Many of the systems we explored are sentential, meaning they can be incredibly
general tools at the cost of abstraction. By being able to encode effectively all of
mathematics, the encoding becomes less direct, with less conceptual transparency,
and potentially more effort is required by the user to map the notation to
the problem. Exceptions to this are tools like Diamond, Edith, and Speedith,
which trade generality for directness: Diamond encodes natural numbers as
arrangements of dots, Edith encodes sets as Euler diagrams, and Speedith directly
encodes sets with existential elements as spider diagrams. They restrict their
domain to afford a more direct representation of said domain.

Similarly, we see these diagrammatic tools lower the inference cost for the user
in their domains, again trading generality for lowered cognitive cost. The user can

12 For example, (x = �)→ (shape(x) = square) places the square in the statement.
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often exploit the observational advantages of the diagrammatic representations
over more general sentential representations. In contrast, sentential tools like
Isabelle or Coq typically exhibit fewer observational advantages, meaning even
simple inferences still require effort.

This impacts the accessibility of these systems. On the one hand we have
domain-specific diagrammatic tools which exhibit all the cognitive benefits of
diagrams and, on the other hand, we have very general tools that require high
skill from the user. Systems such as Hyperproof were designed with the goal
of education from the very beginning: the creators understood the value of re-
representation and diagrammatic aspects as a powerful tool for novices to reach
for. Conversely, Isabelle and Coq are designed for research-level mathematics:
learning to use these tools is hard, but their generality and power reward the effort.
Neither is ‘better’ – these are different classes of tools with different audiences.

The heterogeneous systems we examined (MixR and Hyperproof) have seen
most of their success limited to research, with only limited deployment or ap-
plications in the real world (Openproof). As we have argued in this paper,
cognitive considerations are of utmost importance for the selection of effective
representations for problem solving. Thus, we contend that the limited success
of these systems is due to their lack of flexibility in regards to the variety of
users with different levels of expertise and familiarity. This flexibility could be
harnessed through intelligent recommendation by estimating the cognitive fit
of representation using the criteria presented in this paper. As we argued, this
is necessarily a complex assessment that involves the calculation of trade-offs
between competing criteria.

In summary, we recommend software designers consider the following:

Consideration Explanation

Direct encoding Information is usually easier to extract, but the representa-
tion is typically less general.

Low-cost inference Make each step simple, and the next step easy to identify.
These are relative to your target users. Exploit free rides.

Generality Be general enough to be useful, but not so general as to
be confusing. More expert users can typically handle more
general representations.

Conceptual-syntactic
compatibility

Make it ‘easy’ to do the right thing, but ‘hard’ to do the
wrong thing. Easy and hard depend on the target users.

Syntactic constraints The representation imposes rules, rather than forcing users to
remember them. More constraints typically limit generality.

Geometry and space Favour physically plausible interactions. This typically limits
the ability to generalise.

No one representation will be perfect for every user and every problem, so we
encourage heterogeneous (but coherent) systems: use direct representations with
strong syntactic constraints when available, but more general representations
when flexibility is needed. We hope that software designers will be more open to
different modalities and develop new, more effective tools to solve problems.

One final recommendation is for the software to guide heterogeneous rea-
soning by making the right representation available at the right time. Consider:
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theorem provers that suggest illuminating diagrams; spreadsheets that encourage
explanatory charts; video editing software that intelligently switches between
timelines and nodes. We wish to encourage software that dynamically switches
between – not just allows – varied representations. Research in this direction
could open up new opportunities in human-computer collaboration.

6 Conclusion

We examined in this paper how human problem solving can be modelled as
traversing a problem space: the solver is attempting to reach goal states by
applying actions to the current state. The expertise of the solver impacts their
ability to navigate the problem space, but by selecting an effective representation
we can induce a problem space in which the solver is already expert. The nature
of the representation determines its effectiveness, and specific aspects – each
with trade-offs – are generally agreed to be better; conveniently, these align
with diagrammatic aspects of representational systems. We also discussed how
representations are used in software, specifically theorem proving software: few
support heterogeneous reasoning, and those that do, fail to support the user in
selecting an appropriate representational system. We encourage developers of
these problem solving tools to be aware of how the design decisions they are
making impact the cognitive aspects of their tools, and what effect this will
have upon their users. This review identifies and illuminates some of the factors
impacting those decisions.
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